
International Journal of Theoretical Physics, Vol. 44, No. 3, March 2005 ( C© 2005)
DOI: 10.1007/s10773-005-3366-1

The Carmeli Metric Correctly Describes
Spiral Galaxy Rotation Curves
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The metric by Carmeli accurately produces the Tully-Fisher type relation in spiral
galaxies, a relation showing the fourth power of the rotation speed proportional to the
mass of the galaxy. And therefore it is claimed that it is also no longer necessary to
invoke dark matter to explain the anomalous dynamics in the arms of spiral galaxies. An
analysis is presented here showing Carmeli’s 5 dimensional space-time-velocity metric
can also indeed describe the rotation curves of spiral galaxies based on the properties
of the metric alone.
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1. INTRODUCTION

The rotation curves highlighted by the circular motion of stars or more
accurately characterized by the spectroscopic detection of the motion of neutral
hydrogen and other gases in the disk regions of spiral galaxies have caused concern
for astronomers for many decades. Newton’s law of gravitation predicts much
lower orbital speeds than those measured in the disk regions of spiral galaxies.
Most luminous galaxies show slightly declining rotation curves (orbital speed vs
radial position from nucleus) in the regions outside the star bearing disk, coming
down from a broad maximum in the disk. Intermediate mass galaxies have mostly
nearly flat rotation speeds along the disk radius. Lower luminosity galaxies usually
have monotonically increasing orbital velocities across the disk. (See Sofue and
Rubin (2001) for a good review.) The traditional solution has been to invoke halo
‘dark matter’ (Begeman et al., 1991) that surrounds the galaxy but is transparent
to all forms of electromagnetic radiation. In fact, astronomers have traditionally
resorted to ‘dark matter’ whenever known laws of physics are unable to explain
the observed dynamics.

In 1983 Milgrom introduced his MOND (Milgrom, 1983a,b,c), an empirical
approach, which attempts to modify Newtonian dynamics in the region of very low
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acceleration. Newton’s law describes a force proportional to r−2, where r is the
radial position, but Milgrom finds that a r−1 law fits the data very well (Begeman
et al., 1991). Others have also attempted to formulate modified force laws, such as
(Disney, 1984), (Wright and Disney, 1990) and (Carmeli, 2000; Carmeli, 2002).
The latter formulated a modification and an extension of Einstein’s general theory,
in an expanding universe taking into account the Hubble expansion, which imposes
an additional constraint on the motion of particles (Carmeli, 1982).

Carmeli believes the usual assumptions in deriving Newton’s gravitational
force law from general relativity are insufficient, that gases and stars in the arms
of spiral galaxies are not immune from Hubble flow. As a consequence a universal
constant a0 (in this case, slightly different to Milgrom’s) is introduced as the
minimum acceleration in the cosmos.

Using this theory (Carmeli, 1998) successfully provided a theoretical de-
scription of the Tully-Fisher law, deriving the proportionality between the fourth
power of the galaxy’s rotation speed (v) and its mass (M), vis-à-vis

v4 = 2

3
GMa0, (1)

where G is the gravitational constant. Equation (1) can be re-written

as v4 = 2
3

GM
r2 a0 r2 and therefore the positive square root is v2 =

√
gN

2
3a0 r , where

gN is the Newtonian gravitational acceleration. Hence the latter is consistent with
Milgrom’s phenomenological approach in the low acceleration limit.

2. CARMELI’S 5D COSMOLOGY

In the weak gravitational limit, where Newtonian gravity applies, it is suf-
ficient to assume the Carmeli metric with non-zero elements g00 = 1 + φ/c2,
g44 = 1 + ψ/τ 2, gkk = −1, (k = 1, 2, 3) in the lowest approximations in both
1/c and 1/τ . Here a new constant, called the Hubble-Carmeli constant, is intro-
duced τ ≈ 1/H0. The potential functions φ and ψ are determined by Einstein’s
field equations and from their respective Poisson equation, either

∇2φ = 4πGρm or ∇2ψ = 4πG

a2
0

ρm, (2)

where ρm is the mass density and a0 the universal characteristic acceleration
a0 = c/τ . As usual c is the speed of light in vacuo.

The Hubble law describes the expansion of the cosmos and the matter embed-
ded in it. Therefore the line element for any two points in this ‘new’ space-time-
velocity is ds2 = g00c

2 dt2 + gkk dxk + g44τ
2 dv2 = 0. The relative separation in

3 spatial coordinates r2 = (x1)2 + (x2)2 + (x3)2 and the relative velocity between
points connected by ds is v. The Hubble-Carmeli constant, τ , is a constant for all
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observers at the same epoch, therefore may be regarded as a constant on the scale
of any measurements.

The equations of motion (B.62a and B.63a from (Carmeli, 2002)) to lowest
approximation in 1/c are reproduced here

∂2xk

∂t2
= −1

2

∂φ

∂xk
. (3)

This is the usual looking geodesic equation derived from general relativity
but now in 5 dimensions. And the second is a new phase space equation derived
from the theory

∂2xk

∂v2
= −1

2

∂ψ

∂xk
. (4)

The solution of Einstein’s field equations in 5D result in

φ = (1 − �)

τ 2
r2 − 2GM

r
, (5a)

ψ = (1 − �)

c2
r2 − 2GM

r

τ 2

c2
, (5b)

where � is the matter density expressed as a fraction of the critical or ‘closure’
density, which in this model is defined by ρc = 3

8πGτ 2 .
From (3) and (5a) it follows

∂2xk

∂t2
= − (1 − �)

2τ 2
(r2)′k + GM

(
1

r

)
′k

. (6)

2.1. Post-Newtonian Force Law

By carrying out the differentiation with respect to r (6) becomes a new
post-Newtonian force equation

g(r) = − (1 − �)

τ 2
r − GM

r2
. (7)

For � less than critical (� < 1) in or near a galaxy this means an additional
force inwards is applied to the test particle. For � more than critical (� > 1)
it represents an additional outward force. The solution of (7) for small r is the
familiar Newtonian equation. The first term on the right-hand side of (7) Carmeli
neglects as small on a galaxy scale. But that would only be true if the matter
density (�) is a descriptor of space curvature on a much larger scale than the
galaxy. If it describes the local density then the term is not insignificant.



352 Hartnett

2.2. Post-Newtonian Circular Motion

From (4) and (5b) it follows that

∂2xk

∂v2
= − (1 − �)

2c2
(r2)′k + GMτ 2

c2

(
1

r

)
′k

. (8)

Integrating with respect to dxk (8) becomes(
dr

dv

)2

= (� − 1)

2c2
r2 + GMτ 2

c2

1

r
, (9)

which is the new post-Newtonian equation for circular motion.
For r small, (9) becomes Equation (8) of (Carmeli, 1998). Because the new

dimension (v) in the Carmeli metric is constructed as an analogue to the time co-
ordinate in the usual 4D spacetime, the meaning of the new equation is identified
by the substitutions v → t , τ → c. In this case, with these substitutions, and
� = 1 representing Euclidean space, we recover the usual equation for circular
motion.

2.3. Ontology

A possible ontology for (9) is that even though galaxies are constrained by
gravity against expansion in the radial direction, they are free to expand tangen-
tially to the radius, i.e., azimuthally in the plane of the galaxy.

It is known that some galaxies have portions of their disks and the extended
gas regions beyond that rotate in opposite directions to each other (Sofue and
Rubin, 2001). From the suggested ontology, it would be expected that this situation
could occur. As a new galaxy develops the direction of rotation is determined by
the initial angular momentum of the system. For proto-galaxies with low initial
angular momentum different portions of the developing disk can rotate in response
to the Hubble flow force in the azimuthal direction, some parts prograde, some
parts retrograde.

2.4. Phase Space Equation

After integrating (9) and solving for radial distance (r) as a function of
velocity (v) with the condition v(r = 0) = 0, we get

r =
(

2GMτ 2

� − 1

)1/3

sinh2/3

(
3

2

v

c

√
� − 1

2

)
, (10)

which, to lowest order in v/c, reduces to

r =
(

3

2

)2/3 (
GMτ 2

c2

)1/3

v2/3. (11)
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This is Equation (9) of Carmeli (1998). For typical-mass galaxies (11) de-
scribes orbital speeds of hundreds of kilometers per second. On small r scales, or
scales of small local orbital motion, the effect of (11) is small. Assuming r small
so the first term is negligible and integrating (7) with respect to dr we get the
familiar equation for circular motion

v2 = GM

r
, (12)

where v is the circular or tangential velocity in the system. Simultaneously solving
(11) and (12) by eliminating r yields a Tully-Fisher type relation as in (1). This is
the result of (Carmeli, 1998).

3. GALAXY ROTATION CURVES

The first term in (5a) and hence (7) is valid where φ/c2 � 1. By substituting
ρc into (5a) and assuming � � 1 it can be shown this condition is satisfied when
r2ρm < 1027 (in SI units), where ρm is the local baryonic matter density. For radial
distances within a galaxy (r) on the scale of a few kpcs (1 kpc ≈ 3 × 1019 m) the
density of material ρm < 10−14 g cm−3. This is true for most regions in a galaxy;
the exception would be near a compact object.

By rearranging (7) using � = ρm/ρc where � � 1 we get

g(r) = 8πGρm

3
r − GM

r2
. (13)

Note there is no term dependent on the Hubble-Carmeli constant (τ ). It
is a total local force law, and a post-Newtonian equation. It needs significant
investigation on the scale of galaxies, clusters etc. It indicates a gravity shielding
type effect by the matter density field. For small radii from a central gravitating
body, the first term is insignificant with respect to the second term and (13)
becomes the familiar Newtonian equation. For the Sun–Earth system the second
term is about 30 orders of magnitude larger than the first.

For � � 1, (9) becomes(
dr

dv

)2

= 4πGρm

3a2
0

r2 + GM

a2
0

1

r
. (14)

Notice a0(= c/τ ), explicitly appears in this equation. In the limit of zero
mass and zero distance (9) can be re-written as(

dr

dv

)2

= τ 2, (15)

which is the Hubble relation. Each term on the rhs of (14) contributes half the
gravitational radius canceling the radius in the denominator.
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Now Eq. (14), like (13), is galaxy specific and depends on the matter density
in the disk. Using a new expression for the speed (v) of circular motion of stars
and gases will be derived as a function of distance (r) from the center of a galaxy.
Real values of typical densities will be used to see if a connection can be found to
the Milgrom formula, which means g(r) → √

gN a0 as r → ∞. In this case it
turns out a0 is different by a constant factor.

By substitution of � − 1 → 8πGρmτ 2

3 into (10), for � � 1, we get

r =
(

3M

4πρm

)1/3

Sinh2/3
(v

c

√
3πGρmτ 2

)
. (16)

By integrating (13) with respect to r we obtain the new equation for circular
motion

v2 = 4πGρm

3
r2 + GM

r
for � � 1. (17)

Notice this is equation contains a new term, which adds additional velocity
to the stars and gases circulating in the disk region of the galaxy. But for small r
the term is insignificant.

If we initially assume that the argument of the Sinh function in (16) is much
less than unity, i.e.,

v

c

√
3πGρmτ 2 = x � 1, (18)

which implies v � 150 km s−1 for ρm = 10−23 g cm−3. This is reasonable in some
disk regions of galaxies, but when higher velocities are measured this approxima-
tion cannot be used.

Using the expansion, Sinh2/3(x) ≈ x2/3 + x8/3

9 for x � 1, collecting terms
lowest in x and substituting r from (16) into (17) for v � c for circular motion,
we get

v2 =
√

2

3
GMa0

(
1 + 3πGρm

a2
0

v2

)3/4

. (19)

For very low matter density (ρm → 0) this becomes the Tully-Fisher type
law for galaxies as in (1). However where the approximation (18) is true, it also
follows that

3πGρm

a2
0

v2 =
(v

c

√
3πGρmτ 2

)2
� 1 (20)

Hence (19) becomes

v2 =
√

2

3
GMa0

(
1 + 3

4

3πGρm

a2
0

v2

)
(21)
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and the solution for circular velocity is simply found.

v2 =
√

2

3
GMa0

(
1 − 9πGρm

4a2
0

√
2

3
GMa0

)−1

. (22)

Equation (22) applies in all regions of spiral galaxies with densities
10−30 g cm−3 < ρm < 10−23 g cm−3. Densities in this range yield circular ve-
locities in the disk regions like 85 km s−1 in 109 M
 and 150 km s−1 in
1010 M
 (where M
 is a solar mass unit = 2 × 1030 kg). For larger masses,
the higher velocities mean the approximation made is invalid. Therefore for
higher velocities and/or densities ρm > 10−23 g cm−3 (16) must be used without
approximation.

4. MILGROM’S MOND

From (22) we can write

gM(r) = v2

r
=

√
2

3
gN(r)a0

(
1 − 9πGρm

4a2
0

√
2

3
GM(r)a0

)−1

(23)

where gM(r) is the Milgrom acceleration inferred from circular motion and the
M(r) is the enclosed mass at radius r. By squaring (23) it follows

g2
M(r) = gN(r)a′

0

(
1 − πGρm

(a′
0)2

√
GM(r)a′

0

)−2

(24)

where gN(r) is the Newtonian acceleration and a′
0 = 2

3a0 ∼ 5.2 × 10−10 m s−2,
depending on the precise value of τ .

In the region of low acceleration on the edge of a galaxy where ρm → 0 as
r → large, and M(r) → a constant, (24) becomes

g2
M(r) = gN(r)a′

0 (25)

which is the low acceleration limit of Milgrom’s phenomenological law.

5. TOY MODEL DENSITY PROFILE

Let us assume a simple density distribution for a spiral galaxy valid in the disk
region, expressed in cylindrical co-ordinates (r, φ, z) but with no φ-dependence
on mass density

ρm(r, z) = Ar−αe−βz (26)

where A, α and β are parameters to be determined. Here β = 1/z0, and z0 is an
exponential scale factor of order of several parsecs for a galaxy. Therefore in this
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simple toy model the accumulated mass of the galaxy M(r) can be written as the
sum of two parts, the bulge mass (M0) plus the disk mass

M(r) = M0 + 2π

∫ r

0
rdr

∫ z

−z

dzρm(r, z)

= M0 + 2πA

∫ r

0
r1−αdr2

∫ z

0
e−z/z0 dz, (27)

which yields mass as a function of r.

M(r) = M0 + 4πAz0

2 − α
r2−α where α �= 2. (28)

And also assume the density is uniform in z and valid for z = 0, hence in the
appropriate units,

ρm(r) = Ar−α. (29)

Substituting (27) and (29) into (22) we get for circular motion

v2 =
√

2

3
G

(
M0 + 4πAz0

2 − α
r2−α

)
a0

×
(

1 − 9πGAr−α

4a2
0

√
2

3
G

(
M0 + 4πAz0

2 − α
r2−α

)
a0

)−1

. (30)

Assuming z0 = 1 pc, Eq. (30) was fit to the velocity-distance data of
NGC6503 from (Begeman et al., 1991) with the results shown in (broken) curve 1
in Fig. 1. The best fit parameters for M0, A and α were determined. The fit yielded
a first order density dependence on r. It also showed a good agreement, show-
ing the correct trend, especially in the disk region, considering the simple model
used. The total mass of the galaxy is then M(r = 15 kpc) = M0 + 4πAz0r =
(1.836 + 0.165) × 109 M
. Therefore the disk comprises 8.9% of the total galaxy
mass and the total mass of the galaxy equals 2.0 × 109 M
. This compares with
published value of (Begeman et al., 1991) of 4.8 × 109 M
 for the luminosity
mass of the galaxy. It is underestimated, which is the reverse of the dark matter
problem.

But most importantly no dark matter is needed to explain the rotation curve.
The shape of the derived dependence of the tangential speed of the stars to their
radial distance from the center of the galaxy is in accordance with expectation.
A more comprehensive model though is needed especially for the region close to
the central bulge. That should involve a gas component as well as a more precise
model of the enclosed mass. Also the approximate model used here would not
apply as the density and orbital speeds will be greater in many cases. However the
purpose of the toy model presented here is to show that it can work in the outer
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Fig. 1. Fit to the velocity-distance data of the spiral galaxy NGC6503.
Filled circles are the data, and the broken line (curve 1) the fit from
(31). The parameters M0 = 1.836 × 109 M
 and α = 1.0075 were
determined from the fit. Curve 2 (solid line) represents the fit using
an undulating density function as shown in Fig. 3.

disk region of a galaxy and realistic though much smaller masses result from the
fit than when halo dark matter is invoked.

6. GENERAL SOLUTION

After substituting into (16) and (17) a transcendental equation of this form
results,

δv2 sinh2/3(ζv) − γ sinh2(ζv) − γ = 0 (31)

where δ = ( 3M
4πρm

)1/3, ζ =
√

3πGρm

a0
, γ = GM, which must be solved for the motions

of stars and gases in any region of a galaxy. An exact solution of (31) is of course not
analytically possible but the solution may be visualized using a 3D plot generated
by the Mathematica software package. This is shown in Fig. 2. It is apparent that
as we follow a line of constant mass (M) we see the tangential velocity (v) increase
as a function of local matter density (ρm). The more massive the galaxy the less
sensitive the curves are to changes in density.

6.1. Density Fluctuations

As is noted in many galaxy rotation curves the velocity often rises and falls
as a function of radial distance. This is indicative of changes in density in the disk
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Fig. 2. Solution of Equation (31) with orbital velocity (v) on the vertical axis
in km s−1, the galaxy mass (M) in 109 M
 units and the matter density (ρm)
in g cm−3.

region. In order to simulate the undulating density fluctuations in the arms of a
spiral galaxy, which commonly are of the order of a few tens of kilometers per
second (Sofue and Rubin, 2001), I have chosen a density function as shown in
Fig. 3. This function has a mean r−1 dependence on radius as per the result of the
toy model above. Using this function and a mass derived from (28), replacing the
density function, Equation (31) was solved for 20 fixed points along the radius,
where mass and density are both functions of radius. The mass M0 was adjusted to
get the best fit to the simulated data of NGC6503 and the result is shown in (solid)
curve 2 in Fig. 1. The mass of the galaxy was then determined to be 3.2 × 109 M

with 14% of the mass in the disk out to 15 kpc. This is somewhat different to the
toy model result above, and the fit is not as good, however I have tried to simulate
the effect of density fluctuations. Note it has not been attempted to simulate density
and mass within the central 5 kpc. That will be left to future work.

By changing the mass of the central nuclear bulge from M0 = 2.8 × 109 M

by 1 and 2 orders of magnitude the following curves in Fig. 4 were generated.
Curve 1 is the same curve as curve 2 in Fig. 1, curve 2 is with M0 = 28 × 109 M

and curve 3 is with M0 = 280 × 109 M
 in the central core. Notice the stronger
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Fig. 3. : Simulated density fluctuations (in g cm−3) as a function of disk radius (in kpc).

density fluctuations and the rigid body steep nuclear rise. Normally the latter
would fall well within a kpc but I have not attempted to model the nuclear bulge
region.

In each of the above the density dependence was r−1 (i.e., α = 1) and with
about 10% of the mass in the disk out to 15 kpc, as in the toy model above.
By altering the density fall off we get a rising velocity curve. Curve 4 of Fig. 4

Fig. 4. Various rotation curves generated from Eq. (31). See the text for details.
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represents a galaxy with a 1010 M
 core and only 7.5% in the disk out to 15 kpc
and a density function falling as r−0.9 (α = 0.9). Curve 5 represents a galaxy
with a density dependence of r−0.8 (α = 0.8) and M0 = 2.8 × 109 M
 but with
14.4 × 109 M
 in the disk out to 15 kpc. That is 83% in the disk. This curve shows
a continuous rise as a function of distance as most of the mass is exterior to the
nucleus.

7. GALAXY MASS

Equation (31) can be rearranged to calculate the mass of a galaxy from the
known velocity and an estimate on the density.

M =
(

3

4πG3ρm

)1/2
v3 sinh(ζv)

cosh3(ζv)
. (32)

Equation (32) is post-Newtonian equation and contains, besides constants,
a measured velocity and the matter density which needs to be estimated in the
region where the velocity is measured. The universal acceleration constant a0, is
contained in ζ . Here it was assumed that a0 = 7.8 × 10−10 m s−2 after Carmeli.

Using the measured orbital speeds around the Milky Way galactic center we
can calculate an enclosed mass from (32) and compare it to the enclosed mass
derived from the Newtonian circular motion Equation (12) as well as the commonly
cited galaxy mass of 1011 M
. Table I shows the results of the calculations. Our
sun’s position is within the 9.95 kpc and the enclosed mass is four times smaller
from the Post-Newtonian equation when a reasonable density is assumed. If a
density 2 orders of magnitude larger is assumed, the mass is seven times smaller.
At 18.4 kpc the enclosed mass is three times smaller depending on the matter
density.

From Table I is can be clearly seen that the ‘missing’ mass or the dark matter
that is supposed to haunt the halo regions of our galaxy is the result of the incorrect

Table I. Expected Mass of Milky Way Galaxy

Mass from Mass from Density Radial Velocity
(12) [109 M
 ] (32) [ 109 M
 ] [g cm−3] position [kpc] [km s−1] Reference

89.7 14.0 10−17 9.95 200.78 Figure 4 of Sofue
and Rubin (2001)

89.7 23.3 10−19 9.95 200.78 Figure 4 of Sofue
and Rubin (2001)

370.2 117 10−21 18.4 300 (Webpage)a

aThere is some evidence for a Keplerian declining rotation curve beyond 17 kpc (Honma and Sofue,
1997). The mass distribution >22 kpc is still controversial. (Sofue & Rubin, 2001).
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equation of circular motion. Depending on the matter density distribution through
the galaxy the total mass may in fact be at least four times less than previously
calculated.

8. CONCLUSION

Carmeli successfully predicted the accelerating universe (Carmeli, 1996)
2 years before the announcements (Garnavich et al., 1997) (Perlmutter and Alder-
ing et al., 1997). His new metric has validity on the scale of the universe without
assuming any dark matter (Hartnett, 2004). Here it is also shown that it may be
the solution to the rotation curve anomaly in the outer regions of spiral galaxies.

Equations of motion have been derived from Carmeli’s metric, which produce
a Tully-Fisher type relation and describe the rotation curves in spiral galaxies
without the need for non-baryonic halo dark matter. New equations for circular
motion are discovered. A theoretical comparison is made with Milgrom’s MOND
phenomenology and some agreement found in the low acceleration limit. Based
on the 5D space-time-velocity of the Carmeli metric the assumed dark matter
in galaxies to explain the anomalous rotation curves is no longer needed. This
situation is similar to the case when Einstein introduced his general theory the
advance of the perihelion of Mercury was explained adequately without the need
for dark matter as had earlier been believed.
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